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If an unpolluted tributary joins a river less than about thirty channel breadths 
downstream of an effluent outlet, then the additional dilution can reduce the peak 
pollution level experienced a t  the shoreline. This paper identifies the optimal sites for 
steady discharges to take full advantage of the extra dilution. 

1. Introduction 
Contaminant plumes in rivers are extremely long and narrow (Fischer et al. 1979, 

figure 5.6). It can take of the order of a hundred channel breadths downstream for 
the contaminant to become well-mixed across a river (Yotsukura & Sayre 1976). 
Correspondingly, there is a long stretch of river for which the pollution levels are 
critically dependent upon the precise siting of an effluent outlet (Yotsukura & Cobb 
1972; Smith 1987). 

When a polluted river is joined by a clean tributary there will be eventual dilution 
of the contaminant, taking place over about a hundred channel breadths downstream 
of the junction. For sudden discharges Daish (1985) has shown that there is also extra 
longitudinal spreading, which he quantifies as a junction variance. 

Here we consider steady discharges. If the contaminant plume has not yet spread 
across the polluted river, then the merging with the clean tributary can delay the 
contaminant reaching the riverbanks. Thus, not only is the eventual pollution level 
reduced, but so also is the peak pollution level experienced at  the shoreline. The 
purpose of the present paper is to identify the optimal sites upstream of the junction 
so that the peak shoreline pollution level is minimized. 

2. Flow geometry and equations 
As explained by Daish (1985), and calculated in detail by Jovanovic & Officer 

(1985), the adjustment region for the flow a t  the river junction is short compared 
with the downstream lengthscale for mixing across the river. Thus, to deal with the 
junction region, we temporarily ignore transverse diffusion and we take the 
concentration to be carried with the flow (see figure 1 ) .  For simplicity, each reach of 
the river system *is also assumed to be straight and we use conventional (x,y) 
coordinates along and across the flow. The matching becomes 

c(x,, Y*) = c(x;? Y L  (2.1) 

where c is the concentration, x; is just upstream of the junction, x,' is just, 
downstream of the junction, and the flow-following connects y* to y across the 
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FIGURE 1. Sketch of a river junction with its flow regions. The contaminant plume would be 
much narrower and further upstream than indicated. 

junction region, We use the convention employed by Daish (1985) of using asterisks 
to identify upstream quantities when there is any possibility of confusion. 

For rivers with depth h(y) much less than the breadth, the appropriate depth- 
average advection-diffusion equation is 

hu as c = a,(hK a, c ) ,  (2.2a) 

where u ( y )  is the longitudinal velocity and K(Y) the transverse diffusivity. At the 
Shorelines y?, y,*, y-, y+ (see figure l),  the no-flux boundary condition is 

hKayc = 0. (2.2 b )  

3. Avoiding the overshoot 

terms of the eigenmodes $,(y) : 
In the downstream section of the river the concentration can be represented in 

with 
hKd$ 12- - 0 on y = y-, y,, 

dY 

(3.1 a) 

(3.16) 

( 3 . 1 ~ )  

$h0= 1, po =o.  (3.2a, b)  
The zero mode is 

The solution for c(z, y) can be written 

(3.3a) 
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with (3.3b) 

The quantity Q is the volume flux rate of the flow in the downstream reach of the 
river. 

Smith (1982, $4) explains that the only way to avoid an overshoot of concentration 
at either of the river banks is to require that 

c1 = 0. (3.4) 

(The first non-constant eigenfunction @,(y) has opposite signs a t  the two banks 
y-, y+. So, unless c, = 0, the concentration ( 3 . 3 ~ )  a t  large distances downstream will 
exceed the asymptote c,, a t  one side of the channel). The elimination of @1 from the 
solution ( 3 . 3 ~ )  means that mixing across the flow is achieved as rapidly as possible, 
which is the design criterion suggested by Yotsukura & Cobb (1972). 

4. Upstream extrapolation 
Using flow-following we link the downstream eigenmode q51 to the upstream 

function G1: 
@l(x;? Y") = @1(xof, Y). (4.1) 

Thus, in terms of the upstream depth and velocity profiles, the requirement (3.4) 
becomes 

hu45, (xi, y*) ~(x;, y*) dy* = 0. 1: 
The reciprocal theorem for advection-diffusion equations (F. B. Smith 1957) leads 

us to require that 45, satisfies the reversed-flow problem: 

- hu a, 45, = a y ( h K  ay @,), (4.3a) 

with hKayQ1 = 0 on y = y?, y:. (4.3b) 

With this upstream extrapolation of Q1, the condition (4.2) applies a t  all upstream 
values of x: 

hu@,cdy* = 0 for all x < x;. (4.4) E 
It must be emphasized that cD1 is not an eigenmode of the upstream branch, but is 
an extrapolation of the downstream eigenmode 4,. 

For a point source, c is initially concentrated at a single point across the flow. 
Thus, the only way of achieving the result (4.4) is to position the source a t  a zero of 
Q1(x, y*). This then defines the optimal discharge positions with respect to the far 
downstream pollution 

Qbl(X, y*) = 0. (4.5) 

Such a zero only exists if the single zero of G1 transfers upstream into the 
appropriate reach of the river. This implies that it is generally better to make 
discharges in the tributary with the greater volume flow rate. By analogy with 
(3.3a, b) we can show that G1 asymptotes upstream to the constant non-zero 
value 

(4.6) 
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Thus, the zero of GI ceases to exist far upstream of the junction. The asymptote (4.6) 
has the opposite sign to the part of q51 associated with the clean tributary. Hence, by 
the continuity of GI, we can infer that the zero contour comes to the bank that 
connects to the tip of the junction. 

5. Avoiding local pollution 
Positioning a discharge a t  a riverbank may be compatible with minimizing 

pollution far downstream in another reach of the river, but is unacceptable in terms 
of the local pollution. Thus, we should ensure that the peak pollution level 
experienced in the first reach of the river is no greater than that in the downstream 
reach. 

When c1 = 0, the peak shoreline concentration far downstream is the asymptote 

hue dy. 
1 y+ c = -  

a Q jy- 
Since all the pollutant originates from one of the upstream reaches, this can be 
written in terms of the upstream concentration : 

The volume-flux ratio (Q* /Q)  is the improvement in pollution levels by the dilution. 
We require that in the upstream reach the shoreline concentration nowhere exceeds 
CO. 
Our main concern is with the bank that connects to the tip of the junction. We seek 
to ensure that the discharge is far enough away from that shoreline so that the 
shoreline concentration is less than co. The most stringent constraint stems from the 
furthest downstream location, i.e. the tip of the junction. 

We again use the reciprocal theorem for advection-diffusion equations (F. B. 
Smith 1957 ; Smith 1983). For a shoreline discharge a t  the tip of the junction with the 
flow reversed, we define a Green function 

- hu a, G = ay(hK ay G )  + S(y - y? ) S ( X  - xi) Q*, (5.3a) 

with hKayG = 0 on y = y!, y:. (5.3b) 

Upstream of the junction and downstream of the effluent outfall we have 

rY: 
huc G dy* = constant 

J d  
(5.4) 

From the limiting cases in which c or G is concentrated a t  a single point we infer that 
the concentration c a t  the tip of the junction is given by 

(5.5) 

Thus, the permissible discharge locations are further from the shoreline than the 
(&*/&) contour of the Green function G (x, y). 



Minimizing shoreline pollution in rivers with tributaries 593 

The resulting optimal selection of discharge sites is where 

(5.6a, b)  

The first condition ensures that far downstream the maximum shoreline con- 
centration is c,,, while the second condition ensures that the same upper bound is 
satisfied in the upper reach. Both conditions enforce that the discharge sites to be 
positioned within a diffusion lengthscale of the junction. Otherwise the contaminant 
plume will have already reached the river banks in the upstream stretch of river, and 
the peak concentration level will occur before the junction is reached. 

6. Illustrative example 

diffusivity as being proportional to each other : 
To make the calculations as simple as possible, we model the depth, velocity and 

h = H [ c o s ( z ) r ,  u = U[cos(z)y,  K = K [ c o s ( z ) r ,  (6.la-c) 

with 

The flow-following matching across the junction region gives 

Q * [ l + s i n ( K ) ]  2B* = ~ [ l + s i n ( g ) ]  

In the downstream reach the first non-constant eigenfunction is 

(6.1 d- f )  

Hence, at the upstream end of the junction the upstream extrapolation has the 

Conveniently, a series expansion for involves just two terms: 

So, i t  is easy to find the zero contour (see figure 2 )  

The tip of the junction is a t  (0, B*) .  Upstream of the tip, the Green function 
G(x, y) has the Legendre series representation 

G =  1+ 2 00 (2n+1)Pn ( sin- . n y * )  
(n(n+l)n2K*x) 

2B* exp 4U*B*2 ' 
n=l 

(6.7) 
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Position upstream of junction 

FIGURE 2. Optimal discharge positions upstream of a junction. The numbers indicate the ratio 
Q*/Q ofthe total volume discharge rates in the upstream and downstream reaches of the river system. 
The diffusion scale L* typically corresponds to about thirty times the channel breadth. 

1.4 -J 

o.8 -1 

Position downstream of junction 

FIGURE 3. The concentration a t  the shorelines for an optimal discharge ( x x x , + + +), and for 
a non-optimal discharge (0,  0) the same distance from the opposite shore. There is a jump in 
position of the upper river bank which gives rise to a jump in the corresponding shoreline 
concentrations. 

This formula permits us to ascertain which parts of the 
constraint 

= 0 contour satisfy the 

&* 
G < Q  

(indicated by the continuous curves in figure 2 ) .  
The diffusion lengthscale for transverse mixing can be estimated (with n = 2 )  

(6.9) 

For turbulent open-channel flows the magnitude K* of the transverse diffusivity can 
be estimated : 

K* x 0.01 H* U*.  (6.10) 
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Hence, the diffusion lengthscale becomes 

(6.11) 

If the aspect ratio B:H is of order 10: 1 then L* corresponds to over thirty channel 
breadths (60B*) upstream of the junction. 

Figure 3 illustrates the difference in shoreline concentrations for optimal and non- 
optimal discharges. The discharges take place a distance L* upstream of a junction 
with flux ratio &*/& = 0.8. The non-optimal discharge is a t  the same distance 
0.77 B* from the upper bank as the optimal discharge is from the lower bank. Hence 
upstream of the junction the shoreline concentrations are merely swapped around. It 
is downstream of the junction that the shortcomings of the non-optimal (lower) 
discharge becomes apparent. For a distance of several hundred channel breadths 
downstream of the junction, there is a substantial overshoot in the concentrations 
experienced along the nearest bank. (To fix the downstream lengthscale we have 
assumed that the aspect ratio B:H is the same as in the upstream reaches.) 

7. Meandering streams 
It is in the physics that there is the most profound difference between straight and 

meandering streams. The curvature can induce secondary flows which greatly 
augment the transverse mixing (Rozovskii 1961). However, if the water depth is 
much less than the channel breadth, then this augmented mixing can be allowed for 
merely by including a secondary-flow contribution in the transverse mixing 
coefficient K (Fischer 1969). 

Mathematically, the effects of meandering can be accommodated by the use of 
flow-following coordinates (Smith 1982). The x-dependence of the flow quantities h,  
K ,  u means that the eigenmodes are not self-adjoint. The concentration c(x,y) is 
expanded in terms of downstream rpodes g5n(x, y), with coefficients c ,  which depend 
upon tke adjoint upstream mode gl,(x,y). Hence, a t  a junction it is the upstream 
mode dl(x, y) that has to be extrapolated upstream. The most significant difference 
from the straight-river case is that the larger K-values will make the diffusion 
lengthscale L* shorter. So, the discharges will have to be closer to the junction to 
take full advantage of the extra dilution. 

8. More than one junction 
Another complication of real river systems is that on the diffusion lengthscale 

there can be more than one tributary joining a river. In principle, the necessary 
generalization of the above analysis is straightforward. The eigenmode g51 for the 
furthest downstream reach needs to be extrapolated upstream. The zero contour 

defines the optimal discharge positions with respect to the far downstream pollution. 
The upstream penetration of this contour will be of the order of the diffusion 
lengthscale. Also, by continuity, the contour will only enter a t  most one of the 
tributaries. 

To avoid local pollution we again ensure that the discharge is far enough away 
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FIGURE 4. Optimal discharge positions for the merging of three identical tributaries. 
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FIGURE 5. The concentrations at the shorelines for an optimal discharge at an upstream 
distance -0.75 L* in the river geometry shown in figure 4. 

from the upstream shorelines that the shoreline concentration is less than the 
eventual asymptote c,, : 

where Q(i) is the volume flow rate for the corresponding reach of the river system. For 
the respective tips of the junctions we define Green functions G(a) with tip source 
strength Q(k) .  The condition for there to be no excessive pollution upstream of thejth 
tip is 

along the contour (S.1). 
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As an illustrative example we consider a river system with the same depth, 
velocity, and transverse diffusivity profiles as used in $6. The width and depth of 
each stretch of the river system are assumed to be proportional to the local volume 
flow rate. Figure 4 shows the optimal discharge sites for the merging of three 
identical tributaries. After each of the junctions the redistribution of the bulk flow 
gives rise to the abrupt shift in the optimal position, The mixing length L* is defined 
as in (6.9) in terms of the furthest upstream flow conditions. 

When there are such multiple junctions, the benefits to be gained from optimal 
discharge siting can be much greater than for single junctions. Figure 5 shows the 
shoreline concentration for an optimal discharge a t  

x = -0.75 L*, y = 0.067 B*. (9.1) 

The peak shoreline concentration is one third of the best that could have been 
achieved in any one of the tributaries alone. 
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